

Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos

Candidatura de 2018

Exame de Matemática

Tempo para realização da prova: 2 horas

Tolerância: 30 minutos

Material admitido: exclusivamente material de escrita

A prova é constituída por duas partes, designadas por Parte I e Parte II.

- A Parte I inclui 7 questões de escolha múltipla.
- Para cada uma delas, são indicadas quatro alternativas, das quais apenas uma está correta.
- Se apresentar mais do que uma resposta ou se a resposta for ilegível, a questão será anulada.
- Não apresente cálculos nem justificações neste grupo de questões.
- Escreva na folha de respostas apenas a letra correspondente à alternativa que considera correta.
- A Parte II inclui 6 questões de resposta aberta.
- Nas questões desta parte, apresente de forma clara o seu raciocínio, indicando todos os cálculos que efetuar e todas as justificações que considerar necessárias.
- Nas aproximações numéricas, quando necessárias, deve ser usada a aproximação às centésimas.
- A avaliação incidirá sobre a qualidade das justificações e tipo de cálculos apresentados, para além do grau de acerto atingido, por cada resposta dada.

GRELHA DE COTAÇÃO DA PROVA

QUESTÕES	COTAÇÃO (valores)
PARTE I	
1	1
2	1
3	1
4	1
5	1
6	1
7	1
TOTAL DA PARTE I	7
PARTE II	
1	1,5
2	1,5
3.1	1,5
3.2	1,0
4.1	1,0
4.2	1,0
4. 3	1,0
5.1	1,0
5.2	2,0
6.1	0,5
6.2	1,0
TOTAL DA BARTE II	12
TOTAL DA PARTE II	13
TOTAL DA PROVA	20

FORMULÁRIO

NÚMEROS

Valor aproximado de π (pi): 3,14159

GEOMETRIA

Perímetro do círculo: 2 π r, sendo r a medida do raio do círculo

Áreas

Paralelogramo: $Base \times Altura$

Losango: $\frac{\textit{Diagonal maior} \times \textit{Diagonal Menor}}{2}$

Trapézio: $\frac{Base\ maior\ +\ Base\ menor}{2} \times Altura$

Polígono Regular: $\frac{Perimetro}{2} \times Altura$

Círculo: π r^2 , sendo r a medida do raio do círculo

Superfície esférica: $4 \pi r^2$, sendo r a medida do raio da esfera

Volumes

Prisma e cilindro: Área da base × Altura

Pirâmide e cone: $\frac{\acute{a}rea\ da\ base\ \times\ Altura}{3}$

Esfera: $\frac{4\pi r^3}{3}$, sendo r a medida do raio da esfera

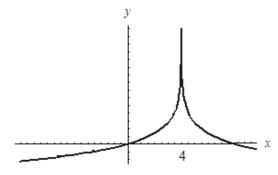
ÁLGEBRA

Fórmula resolvente de uma equação do 2º grau da forma $ax^2 + bx + c = 0$:

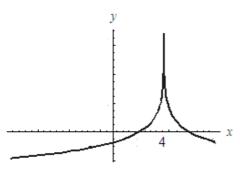
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

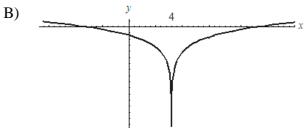
3

TRIGONOMETRIA

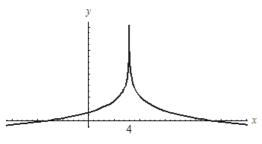

Fórmula fundamental: $sen^2(x) + cos^2(x) = 1$

Relação da tangente com o seno e o cosseno: $tg(x) = \frac{sen(x)}{\cos(x)}$


Parte I


1. Seja $f: \mathcal{R}\setminus\{4\} \to \mathcal{R}$ a função definida por $f(x) = \ln\left|\frac{10}{x-4}\right|$. Qual dos gráficos seguintes pode ser o gráfico de f?

A)



C)

D)

2. Qual das seguintes opções é correta para todo $x \in \mathcal{R}$?

$$(I) \sqrt[3]{|x|} = \left| \sqrt[3]{x} \right|;$$

(II)
$$\frac{x-1}{x-1} = 1$$
;

(II)
$$\frac{x-1}{x-1} = 1$$
; (III) $\sqrt{x^2} = |x|$; (IV) $\sqrt{x^2} = x$;

$$(IV) \ \sqrt{x^2} = x;$$

3. O valor de $3^{4+\log_3(a^2+2a+1)}$ é igual a:

A)
$$32 + a^2 + 2a$$
.

B)
$$81 + \log_3(a^2 + 2a + 1)$$
.

C)
$$3^4 + (a+1)^2$$
.

D)
$$81(a+1)^2$$
.

4. Indique qual das inequações seguintes é equivalente à inequação:

$$2x - (x - 1)^3 > 2x^2 - 3x$$

A)
$$-x^3 + x^2 + 2x + 1 > 0$$

B)
$$x^3 + x^2 + 2x + 1 > 0$$

C)
$$-x^3 - 5x^2 + 8x - 1 > 0$$

D)
$$x^3 - 5x^2 + 8x - 1 > 0$$

5. Seja (u_n) a sucessão cujo termo geral é dado pelo volume de cada um dos cubos que se obtém como mostra a Figura 1.

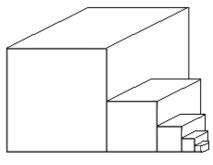
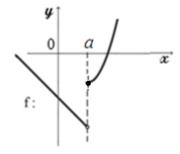
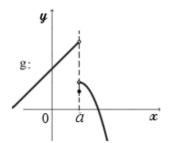
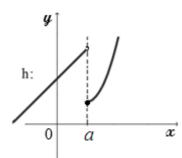


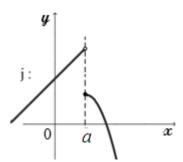
Figura 1

A aresta do cubo maior é 3, sendo a aresta de cada cubo seguinte $\frac{2}{3}$ da aresta do cubo anterior. Nessas condições, o termo geral da sucessão (u_n) é:

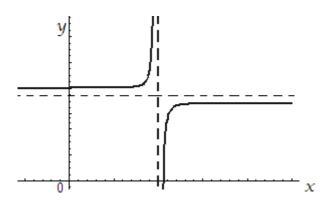

A)
$$\frac{2^{3n-3}}{3^n}$$


C)
$$\frac{2^{3n-3}}{3^{3n-6}}$$

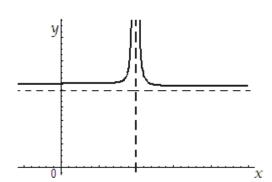

B)
$$\left(\frac{2}{3}\right)^{n-3} \times 27$$


D)
$$\frac{2^{n-3}}{3^{n-2}}$$

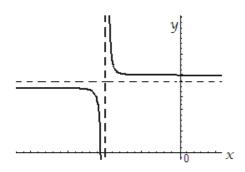
6. Quais das funções, cujos gráficos são os seguintes, têm um mínimo relativo em x=a?



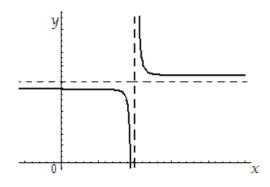
- A) *g*, *h*, *j*.
- B) *g*, *h*.

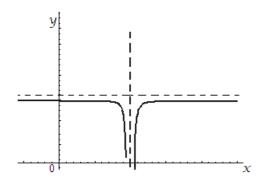

- C) f, g, h.
- D) j, g.

7. Seja f a função real de variável real cujo gráfico é:

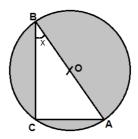


Então,


A) um gráfico de f(-x) é


C) um gráfico de f(-x) é

B) um gráfico de -f(x) é

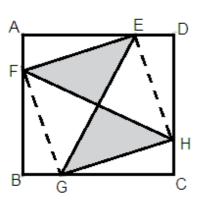

D) um gráfico de -f(x) é

Parte II

1. A figura abaixo representa um círculo de centro O e raio *r* no qual está inscrito um triângulo [ABC], sendo *x* o ângulo CBA. Mostre que a área da região sombreada é dada por

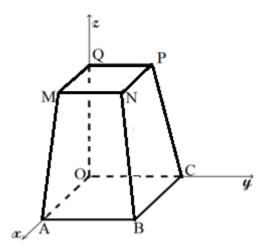
$$A(x) = r^2(\pi - 2 \operatorname{sen} x \cos x)$$

2. Pretende-se ligar uma fábrica a uma central de tratamento de resíduos por meio de uma conduta. Sendo *x* o comprimento da conduta em quilómetros e sabendo que o preço da colocação da conduta, em milhões de euros, é dado, em função de *x*, por,


$$P(x) = 60 - 15x + 25\sqrt{x^2 - 4}$$
, onde $x \in (0, 4)$,

determine o valor de *x* para o qual o preço da colocação da conduta seja de 60 milhões de euros.

3. Na figura ao lado está representado um quadrado [ABCD] cuja medida da área é igual a 100 cm².


Os pontos E, F, G e H pertencem aos lados desse quadrado, onde $\overline{AE} = \overline{BF} = \overline{CG} = \overline{DH}$ e $\overline{AE} = 3\overline{ED}$.

- 3.1. Qual é a medida do perímetro da região sombreada?
- 3.2. Qual é a medida da área da região a sombreada?

- 4. Considere num referencial ortonormado de origem O, os pontos A(-1,4), B(0,2) e C(3,-4). Determine:
 - 4.1. A amplitude do ângulo BOC.
 - 4.2. Um vetor \vec{u} paralelo ao vetor \overrightarrow{AC} , tal que $||\vec{u}|| = 5$.
 - 4.3. Uma equação da circunferência que tem [AB] por diâmetro.

5. No referencial ortonormado Oxyz está representado um tronco de pirâmide quadrangular oblíqua no qual as faces [AOQM], [OCPQ] e [OABC] estão sobre os planos xOz, yOz e xOy, respetivamente. As faces [OABC] e [QMNP] são **quadrados** situados em **planos paralelos**, sendo $\overline{OA} = 4$, $\overline{OQ} = 6$ e $\overline{QP} = 2$.

- 5.1. Escreva uma equação do plano mediador do segmento [ON].
- 5.2. A reta que passa no ponto M e é paralela ao vetor \overrightarrow{QB} interseta o plano yOz num ponto W. Determine as coordenadas de W.
- 6. Para angariar fundos para uma viagem de estudo, a turma da Ana organizou um sorteio em que o prémio era um livro de Saramago. Fizeram-se 80 rifas numeradas de 0 a 79 e a Ana comprou as rifas com os números 1, 11, 21, 31 e 34.

Calcule:

- 6.1. A probabilidade da Ana ganhar o livro.
- 6.2. A probabilidade da Ana ganhar o livro dado que saiu uma rifa com um número menor do que 30.

FIM