+

Provas de Acesso ao Ensino Superior

Para Maiores de 23 Anos

Candidatura de 2025

EXAME DE MATEMÁTICA

Tempo para a realização da prova: 2 horas

Tolerância: 30 minutos

Material admitido: material de escrita e uma calculadora científica sem capacidade gráfica

A prova é constituída por duas partes, designadas por Parte I e Parte II.

- A Parte I inclui 10 questões de escolha múltipla.
- Para cada uma delas, são indicadas quatro alternativas, das quais apenas uma está correta.
- Se apresentar mais do que uma resposta, ou se a resposta for ilegível, a questão será anulada.
- Não apresente cálculos nem justificações neste grupo de questões.
- Escreva na folha de respostas o número de cada questão, indicando **apenas a letra** correspondente à alternativa que considera correta, como se mostra a seguir, caso na questão 1 tenha selecionado a opção A.

Exemplo: 1. (A)

- A Parte II inclui 3 questões de resposta aberta.
- Nas questões desta parte, apresente de forma clara o seu raciocínio, indicando todos os cálculos que efetuar e todas as justificações que considerar necessárias.
- Apresente os resultados de forma exata, na sua forma mais simplificada, sem usar aproximações decimais, exceto na questão 1 em que pode apresentar respostas com aproximação às milésimas.
- A avaliação incidirá sobre a qualidade das justificações e tipo de cálculos apresentados, para além do grau de acerto atingido, por cada resposta dada.

GRELHA DE COTAÇÃO DA PROVA

QUESTÕES	COTAÇÃO
	(valores)
PARTE I	
1	0,7
2	0,7
3	0,7
4	0,7
5	0,7
6	0,7
7	0,7
8	0,7
9	0,7
10	0,7
TOTAL DA PARTE I	7
PARTE II	
1.1	1,6
1.2	1,6
1.3	0,8
2.1	1,0
2.2	1,6
2.3	1,9
3.1	1,9
3.2.1	0,4
3.2.2	1,5
3.2.3	0,7
TOTAL DA PARTE II	13
TOTAL DA PROVA	20

FORMULÁRIO

GEOMETRIA

Perímetro do círculo: $P = 2\pi r$, sendo r a medida do raio do círculo

Áreas

Paralelogramo: $A = Base \times Altura$

Losango: $A = \frac{Diagonal\ maior \times Diagonal\ menor}{2}$

Trapézio: $A = Altura \times \frac{Base\ maior + Base\ menor}{2}$

Polígono Regular: $A = \frac{Perimetro}{2} \times Altura$

Círculo: $A = \pi r^2$, sendo r a medida do raio do círculo

Volumes

Prisma e cilindro: $V = \acute{A}rea \ da \ base \times Altura$

Pirâmide e cone: $V = \frac{\text{Área da base} \times \text{Altura}}{3}$

Esfera: $V = \frac{4\pi r^3}{3}$, sendo r a medida do raio da esfera

ÁLGEBRA

$$ax^2 + bx + c = 0 \Leftrightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

ESTATÍSTICA

$$\bar{x} = \frac{\sum (x_i \times f_i)}{n}; \ \sigma = \sqrt{\frac{\sum f_i (x_i - \bar{x})^2}{n}}$$

PROGRESSÕES

Progressão aritmética

Termo geral:

$$u_n = u_1 + (n-1) \times r$$

Soma dos n primeiros termos consecutivos da p. a.:

$$S_n = \frac{u_1 + u_n}{2} \times n$$

Progressão geométrica

Termo geral: $u_n = u_1 \times r^{n-1}$

Soma dos *n* primeiros termos consecutivos da p. g.: $S_n = u_1 \times \frac{1-r^n}{1-r}$

Parte I

1. O clube desportivo *Rio Grande* tem cento e quarenta e cinco sócios. Entre outras modalidades, os sócios podem praticar basquetebol e voleibol no clube. Relativamente à totalidade dos sócios deste clube, sabe-se que cinquenta sócios praticam basquetebol, oitenta e cinco sócios praticam voleibol e quarenta sócios não praticam nenhuma dessas duas modalidades. Seleciona-se, ao acaso, um dos sócios. Qual é a probabilidade do sócio selecionado praticar basquetebol e voleibol?

A) $\frac{75}{145}$

B) $\frac{30}{145}$

 $C)\frac{40}{145}$

D) $\frac{20}{145}$

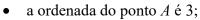
2. Num saco amarelo colocam-se três bolas numeradas de 1 a 3, indistinguíveis ao tato. Num saco verde colocam-se duas bolas, também indistinguíveis ao tato, uma com a palavra "adição" e a outra com a palavra "multiplicação". Retiram-se, simultaneamente e ao acaso, duas bolas do saco amarelo e uma bola do saco verde. Em seguida, efetua-se a operação indicada na bola retirada do saco verde entre os dois números obtidos nas bolas retiradas do saco amarelo. Qual é a probabilidade de o valor obtido ser igual a 3?

A) $\frac{1}{2}$

B) $\frac{2}{3}$ C) $\frac{1}{4}$

D) $\frac{4}{6}$

3. Considere que g(x) = x - 2 e $h(x) = \frac{1}{x-2}$. Qual é o domínio da função $(g \times h)(x)$?

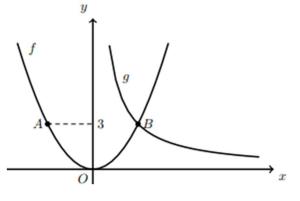

A)]0,2[

B) ℝ

C) 1 - 2.0

D) $\mathbb{R}\setminus\{2\}$

4. Na figura ao lado, estão representadas, num referencial cartesiano, com origem no ponto O, parte do gráfico de uma função quadrática, f, e gráfico de uma função parte do proporcionalidade inversa, g. Sabe-se que:

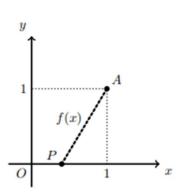


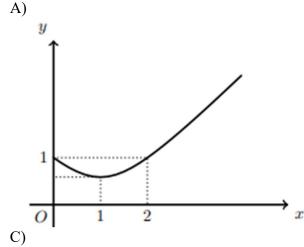
a reta AB é paralela ao eixo das abcissas;

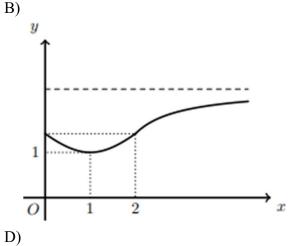
 $3f(x)=x^2:$

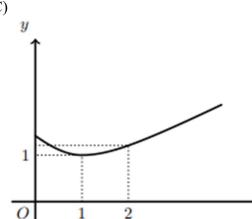
os gráficos das funções f e g intersectam-se no ponto B.

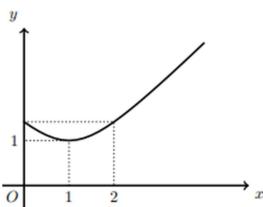
Qual é a expressão algébrica de g(x)?


A) $\frac{6}{x}$


B) $\frac{9}{x}$


C) $6x^{2}$


D) $9x^2$


5. Considere-se o ponto A(1,1), representado na figura ao lado. Admita que um ponto P parte da origem O do referencial e desloca-se ao longo do semieixo positivo Ox. Para cada posição do ponto P, seja x a abcissa de P. Seja f a função que, a cada valor de x, faz corresponder a distância do ponto P ao ponto A. Qual dos seguintes gráficos é o gráfico de f(x)?

6. Considere, num referencial o.n. xOy, o quadrado definido pela condição

$$0 \le x \le 4 \land 1 \le y \le 5.$$

Qual das condições seguintes define a circunferência inscrita neste quadrado?

A)
$$(x-4)^2 + (y-5)^2 = 16$$
 B) $(x-4)^2 + (y-5)^2 = 4$

B)
$$(x-4)^2 + (y-5)^2 = 4$$

C)
$$(x-2)^2 + (y-3)^2 = 4$$
 D) $(x-2)^2 + (y-3)^2 = 16$

D)
$$(x-2)^2 + (y-3)^2 = 16$$

7. Considere, num referencial o.n. xOy, a região definida pela condição

$$4 \le x^2 + y^2 \le 9 \land y \le x \land x \ge 0.$$

Qual é o perímetro dessa região?

- A) $\frac{9\pi}{4}$
- B) $\frac{5\pi}{8}$
- C) $\frac{5\pi}{4}$
- D) $\frac{9\pi}{8}$

8. Considere uma progressão geométrica monótona u_n .

Sabe-se que
$$u_5 = -\frac{1}{96}$$
 e que $u_6 - 4u_8 = 0$.

Qual das seguintes opções é o termo geral de u_n ?

- A) $\frac{1}{3} \left(-\frac{1}{2}\right)^n$ B) $-\frac{2}{3} \left(-\frac{1}{2}\right)^n$ C) $-\frac{1}{3} \left(\frac{1}{2}\right)^n$ D) $-\frac{2}{3} \left(\frac{1}{2}\right)^n$

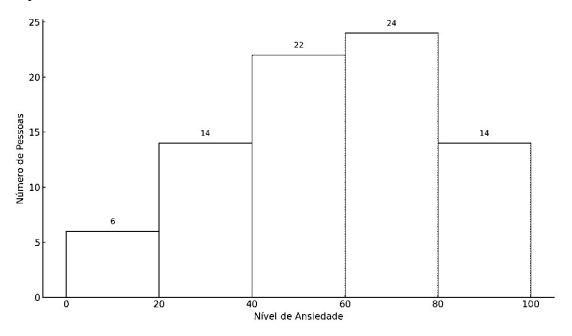
9. De uma progressão aritmética sabe-se que o quarto termo é igual a 14 e que a soma dos quatro primeiros termos é igual a 44.

Qual é a ordem do termo que tem como valor 60?

- A) 25.°
- B) 26.°
- C) 27.°
- D) 28.°

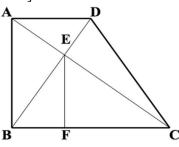
10. Na figura ao lado estão representados um cubo e um octaedro. Os vértices do octaedro são os centros das faces do cubo. A razão entre o volume do cubo e o volume do octaedro é:

A) 6


B) $\frac{1}{6}$

C) 2

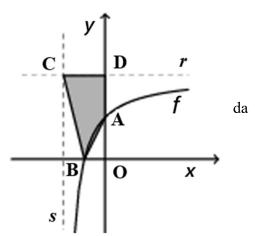
D) $\frac{1}{2}$


Parte II

1. O histograma da figura abaixo representa a distribuição dos níveis de ansiedade de um grupo de oitenta pessoas.

Observação: Apresente os cálculos, quando necessário, com aproximação às milésimas.

- 1.1. Construa a tabela de frequências absolutas, frequências relativas e de frequências relativas acumuladas.
- 1.2. Calcule a média e o desvio-padrão. Justifique os seus cálculos.
- 1.3. Determina a probabilidade de, ao selecionar-se ao acaso uma dessas pessoas, o seu nível de ansiedade ser pelo menos 60.
- 2. Considere a figura onde está representado um trapézio retângulo [ABCD]. Sabe-se que:
 - $\overline{AB} = 6 \text{ cm}$; $\overline{AD} = 40 \text{ mm}$; $\overline{BC} = 0.8 \text{ dm}$;
 - O ponto de interseção das diagonais do trapézio é o ponto *E*;
 - O segmento [EF] é perpendicular ao lado [BC].
- 2.1. Mostre que os triângulos [BCE] e [AED] são semelhantes.
- 2.2. Determine, em centímetros, a medida do comprimento do segmento [*EF*].
- 2.3. Calcule, em metros, a altura do triângulo [ACD] relativa ao lado [AC].


3. Considere a função f, de domínio $\mathbb{R}\setminus\{-2\}$, definida por

$$f(x)=4-\frac{4}{x+2}$$

e a função

$$g(x) = x^2 - 3.$$

- 3.1 Determine o conjunto dos números reais que são soluções da inequação $(f \circ g)(x) \ge 3$. Apresente a sua resposta, utilizando a notação de intervalos de números reais.
- 3.2. Na figura ao lado estão representados, num referencial o.n. xOy:
 - parte do gráfico da função f;
 - as retas r e s assíntotas do gráfico de **f**;
 - o quadrilátero [ADCB];
 - os pontos A e B, pontos de interseção do gráfico função f com os eixos coordenados;
 - o ponto *C*, ponto de interseção das retas *r* e *s*;
 - o ponto *D*, ponto de interseção da reta *r* com o eixo *Oy*.

- 3.2.1. Determine as coordenadas dos pontos C e D.
- 3.2.2. Determine a área do quadrilátero [ADCB].
- 3.2.3. Calcule a equação reduzida da reta perpendicular à reta CA, que contenha o ponto B.

FIM