Security of the second second

Provas de Acesso ao Ensino Superior

Para Maiores de 23 Anos

PROVA MODELO DE MATEMÁTICA B

Tempo para a realização da prova: 2 horas

Tolerância: 30 minutos

Material admitido: material de escrita e uma calculadora científica sem capacidade gráfica

A prova é constituída por questões de escolha múltipla e questões de resposta aberta.

- Questões de escolha múltipla.
- Para cada uma delas, são indicadas quatro alternativas, das quais apenas uma está correta.
- Se apresentar mais do que uma resposta, ou se a resposta for ilegível, a questão será anulada.
- Não apresente cálculos nem justificações ao responder a estas questões.
- Escreva na folha de respostas o número de cada questão, indicando **apenas a letra** correspondente à alternativa que considera correta, como se mostra a seguir, caso na questão 1 tenha selecionado a opção A.

Exemplo: 1. (A)

- Questões de resposta aberta.
- Nas questões desta parte, apresente de forma clara o seu raciocínio, indicando todos os cálculos que efetuar e todas as justificações que considerar necessárias.
- Apresente os resultados de forma exata, na sua forma mais simplificada, sem usar aproximações decimais, exceto nas questões em que estas são solicitadas.
- A avaliação incidirá sobre a qualidade das justificações e tipo de cálculos apresentados, para além do grau de acerto atingido, por cada resposta dada.

GRELHA DE COTAÇÃO DA PROVA

QUESTÕES	COTAÇÃO
	(valores)
1	1,5
2	0,5
3	1,5
4	1,0
5.1	0,75
5.2	0,75
6.1	0,75
6.2	1,25
7	0,5
8.1	0,75
8.2	0,75
9	1,5
10	1,0
11	1,0
12	1,5
13.1	1,5
13.2	0,5
14	1,5
15	1,5
TOTAL DA PROVA	20

FORMULÁRIO

Números e Operações

Valor aproximado de π (pi): 3,14159

Geometria e Medida

Áreas

Polígono Regular: $\frac{\text{Perímetro}}{2} \times \text{Apótema}$

Trapézio: $\frac{\text{Base maior} + \text{Base menor}}{2} \times \text{Altura}$

Superfície esférica: $4\pi r^2$, sendo r o raio da esfera

Superficie lateral do cone: $\pi r g$, sendo r o raio da base do cone e g a geratriz do cone

Volumes

Prisma e cilindro: Área da base × Altura

Pirâmide e cone: $\frac{\text{Área da base} \times \text{Altura}}{3}$

Esfera: $\frac{4}{3}\pi r^3$, sendo r o raio da esfera

Trigonometria

Fórmula fundamental: $sen^2x + cos^2x = 1$

Relação da tangente com o seno e o cosseno: $tgx = \frac{sen x}{cos x}$

Tabela Trigonométrica

Graus	Seno	Cosseno	Tangente	Graus	Seno	Cosseno	Tangente
1	0,0175	0,9998	0,0175	46	0,7193	0,6947	1,0355
2	0,0349	0,9994	0,0349	47	0,7314	0,6820	1,0724
3	0,0523	0,9986	0,0524	48	0,7431	0,6691	1,1106
4	0,0698	0,9976	0,0699	49	0,7547	0,6561	1,1504
5	0,0872	0,9962	0,0875	50	0,7660	0,6428	1,1918
6	0,1045	0,9945	0,1051	51	0,7771	0,6293	1,2349
7	0,1219	0,9925	0,1228	52	0,7880	0,6157	1,2799
8	0,1392	0,9903	0,1405	53	0,7986	0,6018	1,3270
9	0,1564	0,9877	0,1584	54	0,8090	0,5878	1,3764
10	0,1736	0,9848	0,1763	55	0,8192	0,5736	1,4281
11	0,1908	0,9816	0,1944	56	0,8290	0,5592	1,4826
12	0,2079	0,9781	0,2126	57	0,8387	0,5446	1,5399
13	0,2250	0,9744	0,2309	58	0,8480	0,5299	1,6003
14	0,2419	0,9703	0,2493	59	0,8572	0,5150	1,6643
15	0,2588	0,9659	0,2679	60	0,8660	0,5000	1,7321
16	0,2756	0,9613	0,2867	61	0,8746	0,4848	1,8040
17	0,2924	0,9563	0,3057	62	0,8829	0,4695	1,8807
18	0,3090	0,9511	0,3249	63	0,8910	0,4540	1,9626
19	0,3256	0,9455	0,3443	64	0,8988	0,4384	2,0503
20	0,3420	0,9397	0,3640	65	0,9063	0,4226	2,1445
21	0,3584	0,9336	0,3839	66	0,9135	0,4067	2,2460
22	0,3746	0,9272	0,4040	67	0,9205	0,3907	2,3559
23	0,3907	0,9205	0,4245	68	0,9272	0,3746	2,4751
24	0,4067	0,9135	0,4452	69	0,9336	0,3584	2,6051
25	0,4226	0,9063	0,4663	70	0,9397	0,3420	2,7475
26	0,4384	0,8988	0,4877	71	0,9455	0,3256	2,9042
27	0,4540	0,8910	0,5095	72	0,9511	0,3090	3,0777
28	0,4695	0,8829	0,5317	73	0,9563	0,2924	3,2709
29	0,4848	0,8746	0,5543	74	0,9613	0,2756	3,4874
30	0,5000	0,8660	0,5774	75	0,9659	0,2588	3,7321
31	0,5150	0,8572	0,6009	76	0,9703	0,2419	4,0108
32	0,5299	0,8480	0,6249	77	0,9744	0,2250	4,3315
33	0,5446	0,8387	0,6494	78	0,9781	0,2079	4,7046
34	0,5592	0,8290	0,6745	79	0,9816	0,1908	5,1446
35	0,5736	0,8192	0,7002	80	0,9848	0,1736	5,6713
36	0,5878	0,8090	0,7265	81	0,9877	0,1564	6,3138
37	0,6018	0,7986	0,7536	82	0,9903	0,1392	7,1154
38	0,6157	0,7880	0,7813	83	0,9925	0,1219	8,1443
39	0,6293	0,7771	0,8098	84	0,9945	0,1045	9,5144
40	0,6428	0,7660	0,8391	85	0,9962	0,0872	11,4301
41	0,6561	0,7547	0,8693	86	0,9976	0,0698	14,3007
42	0,6691	0,7431	0,9004	87	0,9986	0,0523	19,0811
43	0,6820	0,7314	0,9325	88	0,9994	0,0349	28,6363
44	0,6947	0,7193	0,9657	89	0,9998	0,0175	57,2900
45	0,7071	0,7071	1,0000				

1. Considere o conjunto $P = \left\{ -\frac{19}{10}; \sqrt{0.0196}; \frac{16}{15}; \sqrt{17}; 4 + \pi; \sqrt{\pi}; \sqrt{169} \right\}$.

Qual das opções seguintes apresenta três números irracionais que pertencem ao conjunto P?

A)
$$-\frac{19}{10}$$
; $\sqrt{\pi}$; $\sqrt{169}$

A)
$$-\frac{19}{10}$$
; $\sqrt{\pi}$; $\sqrt{169}$ B) $\sqrt{17}$; $\sqrt{0,0196}$; C) $\sqrt{17}$; $4 + \pi$; $\sqrt{\pi}$ D) $\frac{16}{15}$; $-\frac{19}{10}$; $4 + \pi$

C)
$$\sqrt{17}$$
; 4 + π ; $\sqrt{\pi}$

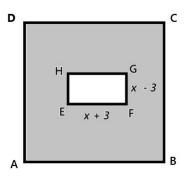
D)
$$\frac{16}{15}$$
; $-\frac{19}{10}$; $4 + \pi$

2. Qual dos números seguintes é o maior número inteiro que pertence ao intervalo $[-\pi, -1]$?

$$A) - 4$$

$$B) - 3$$

3. Em 2012, os museus na Região Autónoma dos Açores foram visitados por 98 mil pessoas. Em 2018, relativamente ao ano de 2012, registou-se um decréscimo de 15% no número de visitantes.


Determine o número de pessoas que visitaram esses museus no ano de 2018. Apresente o resultado em notação científica.

4. Na figura ao lado, estão representados o quadrado [ABCD] e o retângulo [EFGH].

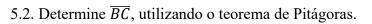
Para um certo número real x, com

$$x > 1$$
, $\overline{AB} = 2x + 5$, $\overline{EF} = x + 3$ e $\overline{FG} = x - 3$.

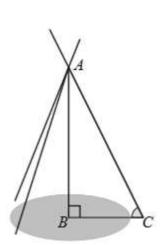
Qual é a expressão que representa a área da região sombreada da figura?

A)
$$3x^2 + 20x + 31$$

B)
$$3x^2 + 20x + 34$$


A)
$$3x^2 + 20x + 31$$
 B) $3x^2 + 20x + 34$ C) $3x^2 + 20x + 16$ D) $x^2 + 20x + 34$

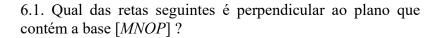
D)
$$x^2 + 20x + 34$$


- 5. Da figura ao lado, considere o triângulo [ABC] retângulo em B, em que $\overline{AC} = 7 m e \overline{AB} = 6 m$.
 - 5.1. Determine a amplitude do ângulo *ACB*.

Apresente o resultado em graus, arredondado às unidades.

Se, nos cálculos intermédios, proceder a arredondamentos, conserve, pelo menos, três casas decimais.

Apresente o resultado em metros, arredondado às décimas.



6. Na figura ao lado, está representado um modelo geométrico. Este modelo é constituído por um prisma quadrangular [ABCDEFGH] e por um tronco de pirâmide [IJKLMNOP] de bases quadradas.

Sabe-se que:

- o prisma [ABCDEFGH] tem bases quadradas com 1,4 metros de aresta e tem 1,8 metros de altura;
- o tronco de pirâmide [*IJKLMNOP*] tem 4,5 metros de altura e é o tronco de uma pirâmide reta com 18 metros de altura;
- $\overline{NO} = 0.9 m$;
- $\overline{II} = 1.2 m$.

O modelo geométrico não está desenhado à escala.

6.2. Determine o volume do modelo geométrico representado na figura.

Apresente o resultado em metros cúbicos, arredondado às unidades. Nos cálculos intermédios não deves proceder a arredondamentos.

- 7. Escreva o número $\frac{5^{13}}{5^{18}} \times 25^{-3}$ na forma de uma potência de base $\frac{1}{5}$.
- 8. Uma empresa de turismo organizou uma visita às Furnas, na qual participaram cinco famílias.
 - 8.1. O dono da empresa decidiu oferecer, por sorteio, um prémio de uma estada de um fim de semana no Hotel Terra Nostra a uma das cinco famílias. A família da Joaquina é uma dessas famílias.

Qual é a probabilidade de a família da Joaquina vir a ser premiada?

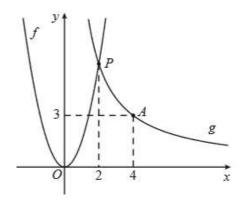
A)
$$\frac{1}{3}$$

$$B)^{\frac{1}{2}}$$

$$C)\frac{2}{3}$$

D)
$$\frac{3}{5}$$

8.2. Nesta viagem participaram três raparigas e três rapazes. Vão ser sorteadas, ao acaso, entre estes seis participantes, duas entradas para visitar o parque Terra Nostra.


Qual é a probabilidade de o par contemplado com as entradas ser constituído por uma rapariga e um rapaz?

Apresente o valor pedido na forma de fração irredutível.

9. Na figura ao lado, estão representadas, em referencial cartesiano, de origem no ponto *O*, parte do gráfico de uma função quadrática, *f*, e parte do gráfico de uma função de proporcionalidade inversa, *g*.

- a função f é definida por $f(x) = ax^2$, com $a \neq 0$;
- os gráficos das funções f e g intersectam-se no ponto P, de abcissa 2;

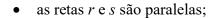
• o ponto A pertence ao gráfico da função g e tem coordenadas (4,3).

Determine o valor de a.

10. Resolva a inequação seguinte

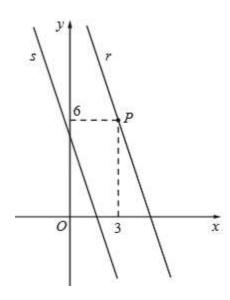
$$-\frac{3x}{2} + \frac{6+x}{7} < \frac{1}{14}(x+3)$$

Apresente o conjunto solução na forma de intervalo de números reais.


11. Resolva a equação seguinte

$$-3x^2 - 5x + 2 = 0$$

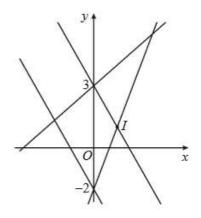
Apresente as soluções na forma de fração irredutível.


12. Na figura ao lado, estão representados, em referencial cartesiano, de origem O, as retas r e s e o ponto P.

Sabe-se que:

- a reta s é definida pela equação y = -3x + 5;
- o ponto *P* pertence à reta *r* e tem coordenadas (3,6);

Determine a equação da reta r na forma y = ax + b.



13. Na figura ao lado, estão representados, em referencial cartesiano, de origem O, as retas definidas pelas equações

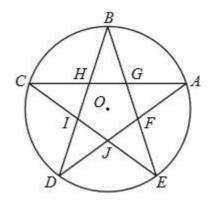
$$y = -2x - 2$$
, $y = 3x - 2$, $y = -2x + 3$ e $y = x + 3$.

O ponto I é o ponto de interseção de duas dessas retas.

13.1. Qual é o sistema de equações que permite determinar as coordenadas do ponto *I*?

$$A) \begin{cases} y = x + 3 \\ y = 3x - 2 \end{cases}$$

B)
$$\begin{cases} y = x + 3 \\ y = -2x + 3 \end{cases}$$


A)
$$\begin{cases} y = x + 3 \\ y = 3x - 2 \end{cases}$$
 B) $\begin{cases} y = x + 3 \\ y = -2x + 3 \end{cases}$ C) $\begin{cases} y = -2x + 3 \\ y = x + 3 \end{cases}$ D) $\begin{cases} y = -2x + 3 \\ y = 3x - 2 \end{cases}$

$$D) \begin{cases} y = -2x + 3 \\ y = 3x - 2 \end{cases}$$

- 13.2. Determine as coordenadas do ponto *I*.
- 14. Na figura ao lado está representada a estrela de cinco pontas inscrita numa circunferência de centro O.

Sabe-se que:

- os vértices A, B, C, D e E da estrela pertencem à circunferência;
- os arcos AB, BC, CD, DE e EA são geometricamente iguais.

Determine a amplitude, em graus, do ângulo AJC.

15. Na tabela seguinte, estão indicados os três primeiros termos de uma sequência de números racionais. Cada termo desta sequência, com exceção do primeiro, obtém-se multiplicando o termo anterior por $\frac{1}{2}$.

1.º termo	2.º termo	3.º termo	
$\frac{1}{2}$	1/4	1/8	

Determine a ordem do termo da sequência que é igual a $\frac{1}{256}$.